Tuesday, February 7

Sensitive Skin : Seminar Report|PPT|PDF|DOC|Presentation|Free Download



Sensitive Skin is a large-area, flexible array of sensors with data processing capabilities, which can be used to cover the entire surface of a machine or even a part of a human body. Depending on the skin electronics, it endows its carrier with an ability to sense its surroundings via the skin’s proximity, touch, pressure, temperature, chemical/biological, or other sensors. Sensitive skin devices will make possible the use of unsupervised machines operating in unstructured, unpredictable surroundings among people, among many obstacles, outdoors on a crowded street, undersea, or on faraway planets. Sensitive skin will make machines “cautious” and thus friendly to their environment. This will allow us to build machine helpers for the disabled and elderly, bring sensing to human prosthetics, and widen the scale of machines’ use in service industry. With their ability to produce and process massive data flow, sensitive skin devices will make yet another advance in the information revolution. This paper surveys the state of the art and research issues that need to be resolved in order to make sensitive skin a reality. 

- Sensitive Skin material will hold embedded sensors and related signal processing hardware. It needs to be flexible enough for attaching it to the outer surfaces of machines with moving parts and flexible joints. 
- The skin must stretch, shrink, and wrinkle the way human skin does, or to have other compensating features. Otherwise, some machine parts may become "exposed" due to the machine's moving parts, and have no associated sensing.
- Wiring must keep its integrity when Sensitive Skin is stretched or wrinkled. This requirement calls for novel wire materials, e.g. conductive elastomers or vessels carrying conductive liquid, or novel ways of wire design with traditional materials, such as helical, stretchable wires. 

Fabricating sensitive skin is based on a new process of depositing polycrystalline CdSe (1.75 eV), CdS (2.4 eV), PbS (0.4 eV) [13], PbSe (0.24 eV) and CuS (semiconductor/ metal) films on flexible substrates at temperatures close to room temperature (eV here are electron-volts). Large area surfaces can be covered. Also, ternary and quaternary compounds as well as heterostructures can be deposited. Transparent conductors on flexible substrates (such as CuS), materials for sensors, with possible combination with higher mobility polycrystalline materials (such as laser annealed polycrystalline silicon), amorphous (such as a-Si), polycrystalline (such as CdS or CdSe), and deep submicron crystalline silicon technology (for fast data processing). We will also need sensors with multiple sensing capabilities, learning, once again, from the design of human or animal skin. These are new and exciting challenges for material science and device physics. 

1 comments:

Guria Qazi said...

Your skin is the representative of you, a clean and well toned skin adds confident to your self.
Skin Medica is one proven by many people that it has
very soothing effects fo r
your skin issues….ffa


Home About-us Computer Science Electronics Mechanical Electrical IT Civil
Copyright © 2018 www.seminartopics.org | All Rights Reserved. Design By Templateclue